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ABSTRACT 
Turbulent fully developed periodic heat transfer and fluid flow characteristics in corrugated two-dimensional 
ducts with constant cross-sectional area are numerically investigated. The governing equations are solved 
numerically by a finite-volume method for elliptic flows in complex geometries using collocated variables 
and Cartesian velocity components. Two different turbulence models (the second moment closure and the 
k-ε) for approximation of the Reynolds stresses are applied. The performance of the models were assessed 
by comparing the results with experimental data. The results show the advantages of the stress closure 
model compared to the k-ε model. The overall Nusselt number and the pressure drop ratio results are 
obtained for the boundary condition of a uniform wall temperature for two inclination angles Φ and two 
duct aspect ratios (H/L) and for Reynolds number ranging from around 3000 to 35,000. The overall Nusselt 
number predicted by the k-ε model is upto 25% higher than the values predicted by the second moment 
closure. The plots of the velocity vectors show a complex flow pattern. The mechanisms of heat transfer 
are explained by the flow phenomena separation, deflection, recirculation, and reattachment. 
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average Nusselt number 
circumferential local Nusselt number 
fluctuation pressure 
pressure 
periodic pressure 
Prandtl number 
per-cycle wall heat transfer rate 
heat transfer rate at the well (per unit area) 
Reynolds number 
top length of the cavity 
source term in general equation 
temperature 
tangential vector 
dimensionless temperature (39) 
bulk temperature 
bulk temperature at the inlet of the module 
bulk temperature at the outlet of the module 
dimensionless bulk temperature (57) 
axial velocity 
fluctuation velocity in main flow direction 
velocity components 
mean velocity 
friction velocity 
U/U* 

velocity in y-direction 
fluctuation velocity in y-direction 
streamwise coordinate 
coordinate 
pU*y/μ 
non-periodic pressure gradient 
turbulent diffusivity of heat 
bulk-to-wall temperature ratio 
Kronecker delta 
per-cycle pressure drop in corrugated duct 
pressure drop in parallel plate duct 
average wall-to-bulk temperature difference 
dissipation rate of the turbulent kinetic energy 
distance normal to the wall 
dimensionless temperature 
bulk-temperature-gradient parameter 
dynamic viscosity 
kinematic viscosity 
turbulent viscosity 
density 
Reynolds stress components 
turbulent Prandtl number or Schmidt number 
empirical diffusion constant ( = 1 ) 
empirical diffusion constant ( = 1.185) 
corrugation angle 
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INTRODUCTION 
Compact and efficient surfaces are attempted for in heat exchangers to reduce the heat exchanger 
costs. One way of achieving this is to employ wall-corrugated ducts in heat exchanger apparatus. 

While there are many reports on studies of heat exchangers only few reports are focusing on 
the investigation of heat and fluid flow in corrugated ducts1-5. Three of these studies1-3 are 
basically concentrated on experimental investigation of the ducts. O'Brien and Sparrow1, and 
Izumi et al.2 measured heat transfer rates in a corrugated wall channel with 120° and 90° bend 
angle, while Goldstein and Sparrow3 investigated local mass transfer rates by means of 
naphthalene sublimation technique. O' Brien and Sparrow measured heat transfer rates for several 
different Pr with a fixed corrugation geometry, whereas Izumi et al.2 adopted the corrugation 
period as a parameter while holding the fluid properties constant. 

Farhanieh and Sundén4 studied numerically the fully developed laminar fluid flow and heat 
transfer in a periodically corrugated wall duct. Corrugation angles of 45° and 15° with three 
different height to length ratios were considered. Amano et al.5 studied numerically laminar and 
turbulent heat transfer in a periodically corrugated wall channel with 90° bend angle with and 
without fins. Faas and McEligot6 have also studied laminar flows for channels with 90° bends. 

There are some further numerical and experimental results available in the literature7. The 
numerical approach for solution of such geometries is based upon the assumption that the duct 
is long and consists of many identical modules in the streamwise direction where the fully 
developed velocity field repeats itself in a cyclic manner. This assumption enables us to ignore 
the influence of the entrance and exit regions and confine the calculation domain to cover only 
one of the modules. 

The methodology for fully developed solutions of this kind of problem was presented by 
Patankar et al.8 This methodology has been used by Sparrow and Prata9,10 to study laminar 
flow and heat transfer in a periodically converging-diverging tube and in an annulus of 
periodically varying cross-section. Rowley and Patankar11 applied this method in their study of 
tubes with internal circumferential fins. Faghri and Asako12,13, Webb and Ramadhyani14, Sundén 
and Trollheden15, and Farhanieh and Sundén16 have also successfully adopted this method in 
their studies of various ducts with streamwise-periodic variations of cross-sectional areas. Through 
these studies it has been shown that higher convective heat transfer coefficients can be achieved 
by employment of corrugated channels but the pressure drop is also increased. 

In this work a finite-volume method for elliptic flows in non-orthogonal coordinates is applied. 
It utilizes collocated variables and Cartesian velocity components. The general details of the 
method are documented in a report by Davidson and Farhanieh12 and have also been presented 
in a previous paper by Farhanieh and Sundén13. The Reynolds kinematic stresses are 
evaluated by full Reynolds-stress transport equations. However, the results are compared with 
those obtained by approximating the stresses by means of the Boussinesq eddy viscosity model. 

Numerical solutions were carried out for a uniform wall temperature boundary condition at 
two values of the corrugation angle Φ, and two values of the cycle aspect ratio (= H/L). The 
computations were performed in the Reynolds number (based on hydraulic diameter) range 
3000 to 35,000 and for Pr = 0.72 corresponding to air. Nusselt numbers and pressure drop data 
as well as, velocity vectors are presented. 

In an earlier paper by Farhanieh and Sundén4, a similar study for laminar flow has been 
carried out. 

PROBLEM FORMULATION 
The duct considered is presented schematically in Figure I. The oblique walls are positioned at 
an angle Φ to the main flow direction. The geometry of the channel can be specified by the 
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periodic axial full length L, the height H, lengths a1, a2 and S, and corrugation angle Φ. The 
dimensions of the duct are: a1 = 0.1L, a2 = 0.25L and S = 0.3L. The values of 15° and 45° were 
chosen for the corrugation angle Φ. The ratio H/L is varied. 

The heat transfer and fluid flow characteristics for turbulent, incompressible, forced convection 
along the cycle length are to be determined. The walls of the duct are kept at a uniform 
temperature. The axial velocity is in the x-direction. 

GOVERNING EQUATIONS 
The governing equations are the continuity, momentum and energy equations. Consideration 
is given to fully developed periodic turbulent flow. The flow is studied under the following 
assumptions: steady state, constant fluid properties, negligible viscous dissipation and no natural 
convection. 

The pressure P, is expressed by: 

P{x,y)=-px + P*(x,y) (1) 
where P* behaves in a periodic manner from cycle to cycle. In βx, β is a constant representing 
the non-periodic pressure gradient in the flow direction. 

The governing equations in Cartesian coordinates system read: 
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where σ and λ are periodic parameters for the case of a constant wall temperature and Tb the 
fluid bulk temperature. The exchange coefficient Γ is defined as: 

where σt is the turbulent Prandtl number. The dimensionless temperature Θ is defined as: 

The velocity-temperature scalar fluctuation correlation which determines the turbulence diffusive 
flux is replaced by the Boussinesq viscosity approximation. The second moment closure 
has not been used for the temperature equation because the transport model for is not 
well defined for the complex recirculating flows5. The turbulent kinematic viscosity v, is calculated 
by cμk2/ε, where k is the turbulent kinetic energy, ε is the dissipation rate of the turbulent kinetic 
energy and cμ is a constant (see below). 

The shape of the non-dimensional temperature profile Θ(x,y) repeats itself in the fully 
developed periodic area. 

Since the convective heat transfer equation contains two unknowns, Θ(x, y) and λ(x), an 
additional condition is needed to close the problem. The dimensionless temperature 0 must be 
compatible with the definition of the bulk temperature. In dimensionless form we have: 

|Θ|U|dA′ = |U|dA′ (10) 

This equation gives the lacking condition for the dimensionless temperature field. 

Turbulence model 
In the present work, turbulence is described either by the high Reynolds number k-ε 

eddy-viscosity model or by high Reynolds number Reynolds stress closure. 
The first closure variant employed is the Boussinesq viscosity model17 for approximating the 

stresses. In this method the turbulent stresses are assumed to be proportional to the mean rate 
of strain by analogy with the viscous stresses in laminar flow, i.e. 

The second closure variant adopted is that of Gibson and Launder18. The full Reynolds stress 
transport equations are solved for evaluations of the stresses. 

where the terms on the right hand side represent: 
Pij: the production rate of 

εij: the dissipation term of 

file:////U/dA'
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Dij: the turbulent diffusion: 

∏ij: the pressure-strain correlation term which promotes isotropy of turbulence: 

In order to eliminate the unknown correlations appearing in the Reynolds transport equation, 
the pressure-strain, dissipation, and turbulent diffusion terms require model approximation. 

The assumption of local isotropy enables us to approximate the dissipation of by: 

where ε is the dissipation rate of the turbulent kinetic energy. 
The fluctuating pressure p can be eliminated from the pressure-strain correlation via a Poisson 

equation for p. It can be shown that there are three distinct processes which contribute to the 
pressure-strain correlation: 

1. Interaction of fluctuating velocities (∏ij)1 which is also referred to as return-to-isotropy 
term19: 

2. Interaction of mean strain and fluctuating velocities (∏ij)2 which is also referred to as 
return-to-isotropy of production term20: 

3. Both processes in (18) and (19) are influenced by the presence of the wall18 which is 
manifested by damping of fluctuations normal to the wall and enhancing fluctuations parallel 
to the wall. The constitutive equations can be expressed as: 

with Δη being wall normal distance, f is the wall-distance function and may be related to 
Cartesian velocity-oriented components by: 

fx = n21f; fy = n22f; fxy = n1n2f (23) 
The contribution of the turbulent diffusion can be approximated by: 
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The transport equation (12) for Reynolds stresses is discretized in the same way as for any other 
dependent variable Φ. 

The turbulence energy k and its rate of dissipation ε are calculated by: 

where the production term, Prod., have the following form in the Reynolds stress modelling 
(RSM): 

whereas in the k-ε model: 

BOUNDARY CONDITION 
Inlet and outlet 

At the inlet and outlet of the module, conditions of periodicity are imposed, i.e. 

Momentum equations 
Due to the viscous influences near walls, the local Reynolds number becomes very small and 

thus the turbulence model which is designed for high Reynolds number becomes inadequate. 
Both this fact and the steep variation of properties near the walls necessitate special treatment 
for nodes close to the wall. 

In the following explanation of the treatment of turbulence quantities near the wall, it is 
assumed that the region near the wall consists of two layers. The layer nearest the wall is 
designated the 'viscous sublayer' in which the turbulent viscosity is much smaller than the 
molecular viscosity, i.e. the turbulent shear stress is negligible. Ignoring the buffer layer, the 
second layer is designated the 'inertial sublayer' in which the turbulent viscosity is much greater 
than molecular viscosity, making it a fully turbulent region. These two layers are the wall 
dominated regions and it is assumed that the total shear stress is constant. The point y+ = 11.63 
is defined to dispose the buffer (transition) layer, and it corresponds to the intersection point 
between the log-law and the near-wall linear law. Above this point the flow is assumed purely 
turbulent and below this point the flow is assumed purely viscous. 

Since the streamwise pressure gradient is assumed to be negligible, the momentum equation 
reduces to a particularly simple one-dimensional form: 
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The wall function implemented in the calculation procedure can be summarized as follows: 
(a) if y+ ≥ 11.63 where μt/μ » 1, τ ≈ τw 

1. The wall shear stress is obtained by calculating the turbulent viscosity at the node adjacent 
to the wall from the log-law21. The turbulent viscosity used in the momentum equations is 
prescribed at the nodes adjacent to the wall (index P) as follows: 

For μt we obtain: 

The law of the wall can be written: 

Finally, we have for μt: 

where E = 9 and the von Karman constant, K = 0.41. η denotes the normal distance to the wall. 
2. The turbulent kinetic energy is set as: 

k = c-0.5μU2* (34) 
3. The turbulent kinetic energy dissipation rate is set as: 

4. The shear stress is obtained by: 
τw = ρU2* (36) 

(b) if y+ ≤ 11.63 where μt/μ « 1, Τ ≈ ΤW 

1. U* is calculated by: 

2. The procedure 2-4, as explained above, is followed. 

Temperature equation 
A treatment similar to that of the momentum equations is applied to the temperature equation. 
The transport equation at the wall reduces to: 
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It should be mentioned that the heat flux across the viscous sub-layer is assumed to be constant. 
As in the momentum transport treatment, the point y+ = 11.63 is also defined here for disposing 
the buffer layer. If y+ ≤ 11.63 the transport is assumed to be due to only molecular activity, 
and the expression for the heat flux parameter T+ is a simple one. 

If y+ ≥ 11.63, the transport is assumed to be entirely due to turbulence. The heat flux parameter 
T+ becomes a logarithmic function of y+. 

The solution procedure used is summarized as follows: 

(a) if y+ ≥ 11.63 where Γt/Γ » 1, q ≈ qw 

qw is calculated by using the following relation: 

from which it follows: 

where, according to Jayatillika22, the P-function is defined as: 

(b) If y+ ≤ 11.63 where Γt/Γ « 1, q ≈ qw 

qw is calculated by using the following relation 

from which it follows: 

Reynolds stress transport equations 
The boundary condition of the stresses are obtained by the method presented by Lein and 

Leschziner23. The values of the stresses in the log-law region are computed by applying the 
stress equation to local energy equilibrium, and setting the wall distance function equal to unity 
and using ε = U3*/kΔη. We then have: 
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The above stresses are wall-oriented and should be transformed to the Cartesian coordinate 
system in which the velocity components are prescribed within the numerical scheme. 

where t1, t2, n1 and n2 are the tangential and normal components of the wall-oriented unit 
vector, respectively. 

NUMERICAL SOLUTION PROCEDURE 
To deal with complex geometries, a boundary fitted coordinate method is used. In principle, 
the complex flow domain in the physical space is mapped into a rectangular domain in the 
computational space by using a curvilinear coordinate transformation. This means that the 
Cartesian coordinate system xi in the physical domain is replaced by a general non-orthogonal 
coordinate system ξi. 

The momentum equations are solved for the velocity components U and V in the fixed 
Cartesian directions on a non-staggered grid. All the variables are thus stored at the centre of 
the control volume. In order to avoid non-physical oscillations in pressure and velocity, the 
Rhie-Chow interpolation method is used to compute the velocity components at the control 
volume faces. The pressure-velocity coupling is handled by the SIMPLEC method and the 
convective terms are treated by the hybrid scheme. TDMA-based algorithms are applied for 
solving the algebraic equations. Further details are provided in References 24 and 25. 

REYNOLDS NUMBER 
The Reynolds number is calculated as: 

where v is the kinematic viscosity and μ the dynamic viscosity. The mass flow rate through 
a module is evaluated by: 

The velocity U depends on the non-periodic pressure gradient β and therefore, (50) and (51) 
provide a relation between the Re and β. 

PRESSURE DROP 
The per-cycle pressure drop Δp is calculated as: 

Δp = βL (52) 
It is desirable to compare this pressure drop with the corresponding value for a straight parallel 
plate duct with hydraulic diameter (Dh = 2H). From any standard textbook on fluid mechanics, 
e.g. Özisik26, the pressure drop Δp (fully developed flow) in a straight parallel plate duct can 
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be found to be: 

where subscript (o) refers to the straight parallel plate duct. The friction factor ff is calculated 
by the Prandtl friction law24: 

For identical mass flows, the Reynolds number of the straight parallel plate duct becomes equal 
to that of the corrugated duct and the ratio of the per-cycle pressure drops can be expressed as: 

where Um is the mean velocity. 

LOCAL NUSSELT NUMBER 
By using the conventional definition of the heat transfer coefficient between the wall and the 
fluid26 we obtain: 

where Nux is the local Nusselt number, kc the thermal conductivity of the fluid and qw the heat 
flux to the wall. 

The universal temperature profile is used to calculate the heat transfer to the wall of the duct. 
With the dimensionless height of the duct H+ = U*H/v and with the dimensionless bulk 
temperature defined as: 

the local Nusselt number can be written as: 

The bulk temperature is defined by: 

Introducing the dimensionless variables, we obtain: 

where U+ and T+ are as defined previously. 
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OVERALL NUSSELT NUMBER 
The overall heat transfer coefficient hav is defined by an overall heat balance, that is: 

The average wall-to-bulk temperature difference is evaluated as: 
ΔTwb = ½{(Tw-Tb2) + (Tw-Tb1)} (62) 

and the total heat flux is given by: 

where is the mass flow rate and cp is the specific heat of the fluid. Combining (61), (62), (63) 
and the definition of the Nusselt number we have: 

where y is defined as: 

The quantity y is obtained by integrating (7) along the cycle length. 

SAMPLE CALCULATIONS 
The Prandtl number was set equal to 0.72 and Reynolds number was varied from 3000 to 35,000 
by choosing appropriate values of the per-cycle pressure gradient, β. 

Convergence 
The computations were terminated when the sum of absolute residuals normalized by the 

inflow fluxes was below 10 - 4 for all the variables. To achieve convergence in the solution, 
under-relaxation factors of 0.7, 0.4 and 0.5 were chosen for the velocities, pressure correction 
and turbulent quantities, respectively. About 1000 to 4000 iterations, depending on the Reynolds 
number, geometrical parameters, and the turbulence model were required to obtain a converged 
solution for the velocity field. The temperature field, which was also solved iteratively 
(under-relaxation factor 0.8), converged within a few hundred iterations if a known velocity field 
was used. 

Grid size effects and numerical accuracy 
The grid points are distributed in a uniform manner. Each control volume contains one node 

at its centre but the boundary adjacent volumes contain two nodes, one at the centre and one 
at the boundary. Exploratory test runs were carried out for several different grid sizes for the 
case of Φ = 45° and H/L = 1/5. The velocity profiles for these grids at the second corner BB 
(Figure 1) are plotted in Figure 2. The maximum changes in the velocity between the most 
coarse mesh (83 x 24) and the finest mesh (111 x 34) are within 7%. A (100 x 34) mesh was 
chosen in the final calculations to maintain a reasonable accuracy and relatively moderate 
computing costs. 

All calculations were carried out on a DEC 3100 work-station. 
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Comparison with previous results 
The comparison of the overall Nusselt number with the experimental data of O'Brien and 

Sparrow1 in a corrugated duct with a corrugation angle of 30° and a bend angle of 120° is 
given in Figure 3a. As seen from this Figure, the results of the present computations with 
employment of the Reynolds stress closure agree well with the experimental data. The overall 
Nusselt numbers obtained by using the k-ε model show a 38% overprediction compared with 
the second moment closure. 
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Figure 3b presents the comparison of the computed friction factor ff with the experimental 
data. The agreement is reasonably good. The difference between the calculated friction factor 
by using the k-ε model and the RSM model is very small and for this reason only the calculated 
results by RSM is shown in Figure 3b. 

Additional confidence was gained by computing the fluid flow in a backward-facing step. The 
computed results of the velocity and the Reynolds shear stress distribution in the region behind 
the step were compared with the experimental data of Durst and Schmitt27, see Figures 3c and 
3d. In both the recirculating and recovering regions, agreement between the present computations 
and the experimental data are reasonably good. 

RESULTS AND DISCUSSION 

Overall Nusselt number and pressure drop 
The overall Nusselt numbers are displayed on log-log coordinates in Figures 4 and 5. In these 

Figures Nu/Pr0.3 is plotted as a function of Reynolds number for two corrugation angles and 
two H/L ratios. The computations by the second-moment closure (RSM) model and the k-ε 
model are presented. It is noteworthy that the k-ε predictions are 25% higher than those of 
the RSM except in the case of Φ = 15 and H/L = 1/3. 

The reason for higher prediction by the k-ε can be explained by the help of Figures 6 and 7. 
Two distinct differences can be observed in these Figures, i.e. the difference in velocity profiles 
and recirculation zones. RSM predicts much steeper velocity gradients which in turn cause lower 
velocities close to the wall and therefore lower convection to the wall. Since the recirculation 
predicted by RSM is larger than that of the k-ε prediction, the re-attachment takes place further 
downstream. 

Results of the pressure drop ratios are plotted in Figure 8. In the ducts with a corrugation 
angle 45° the pressure drop increases as Reynolds number increases. However, this is not true 
in the ducts with corrugation angle 15°. As the Reynolds number increases the pressure drop 
ratios decrease moderately and become almost constant at high Reynolds numbers. 

Local Nusselt number 
The distribution of the local Nusselt numbers along the duct length are presented in Figure 9. 

In Figure 9a the local Nusselt numbers for Φ = 45° and H/L = 1/5 for three different Reynolds 
numbers are displayed. In Figure 9b Nux is presented for Φ = 45° and two different H/L. The 
difference in the Nux prediction by the RSM and k-ε models are presented in Figure 9c. These 
Figures should be studied in conjunction with the figures displaying the velocity profiles. For 
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convenience the duct is divided to five different sections. The positions of these sections are 
shown in Figure 1. 

At the top wall of the first section, Nux distribution shows a slight increase at the beginning 
of the section and a sharp increase to a maximum at the end of the section. At the bottom wall 
unlike the top wall Nux decreases. At the interface of the sections one and two, Nux decreases 
sharply to a minimum at the top wall and a sharp increase appears at the bottom wall. However, 
an interesting phenomena can be observed at the upper oblique wall in the second section. At 
this wall, Nux forms a triple peak pattern. This phenomena can be described by means of Figure 
10. As the Re increases the recirculation zone becomes smaller and its centre moves closer to 
the corner and the intensity of the recirculation increases. At point d1 at the interface corner 
the Nux starts to decrease due to the deflected velocity which causes no convention to the wall, 
see Figures 7 and 11. Between point d1 and d2 where the upgoing flow meets the down coming 
flow, Nux continues to decline. At this distance, the velocity vectors run almost parallel with the 
oblique wall. At point d2 the first peak takes place. From point d2 to d3 the velocity vectors are 
no longer parallel to the wall and the impingement of the velocity vectors at the wall can be 
observed. This causes higher convection to the wall and therefore the heat transfer increases at 
the wall. The impingement at the end of the oblique wall is higher, see Figure 6, which causes 
the second peak. Due to the curved nature of the flow path in the recirculation the convection 
to the wall at the corner reduces and therefore the local Nusselt number right at the corner 
decreases (see Figure 6). However, at the beginning of the third section and before the corner 
the convection to the wall is higher than the convection at the corner. This causes the appearance 
of the third peak. It is worthwhile to note that the recirculation acts as a conveyor carrying 
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heat between the shear layer and the wall. At the upper wall of the third section the Nux decreases 
upto the re-attachment point and increases moderately thereafter. However, as at the upper 
corner at the beginning of this section Nux decreases. At the bottom wall, due to very high 
convection to the oblique wall Nux increases sharply. Nux falls sharply at the beginning of the 
third section on the bottom wall and increases as convection to the wall increases (see Figure 7). 
The distribution of the local Nusselt number at the bottom and top walls of the fourth section 
is similar to that of the top and bottom walls of the second section, respectively. Nux distributions 
in the fifth and first sections are similar but the mirror image of each other. 

By increasing H/L, the recirculation zones are stretched along the wall (see Figure 11) causing 
lower convection to the wall at the top of section three and bottom walls of sections one and 
five. Thus Nux distribution in the duct with H/L = 1/3 is lower in these parts. Due to the longer 
recirculation zone and according to the continuity, the fluid flow at the top wall of sections one 
and five, and the bottom wall of section three is larger than in the case of the duct with H/L =1/5 
(see Figure 11). Therefore, higher heat transfer is achieved in these regions. At the downstream 
part of the bottom and top oblique walls of the second and fourth sections, respectively, the 
higher forced convection causes higher local Nusselt number distribution. 

At this point it is worthwhile to mention that due to the complex flow situation the use of 
wall functions in the separated flow regions may not be so accurate. However, other procedures 
are scarce and those available are not necessarily more accurate or physically correct. 

In Figure 9c comparison between the RSM prediction and k-ε prediction of Nux is presented. 
At both the top and bottom walls k-ε predicts higher heat transfer. This is due to the prediction 
of higher velocities by k-ε near the wall region. 

CONCLUSION 
A numerical model is developed to investigate the fully developed heat transfer and fluid flow 
characteristics for turbulent flow through streamwise-periodic corrugated ducts with two different 
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corrugation angles and two different duct height to duct length ratios. The governing equations 
are solved by a body-fitted finite-volume method for elliptic flow in complex geometries using 
collocated variables. Two different turbulence models are used to approximate the Reynolds 
stresses. A global new method for treatment of the boundary conditions in curvilinear boundaries 
are presented. The results were obtained for a uniform wall temperature for Reynolds number 
ranging from around 3000 to 35,000. Comparison with experimental data approves that the k-ε 
model overpredicts the Nusselt numbers. The plot of the velocity vectors show a complex flow 
pattern. The effects of the separation, deflection, recirculation and re-attachment on the heat 
transfer mechanisms are described in details. The overall Nusselt number and pressure drop are 
increased by increasing Reynolds number. The results indicate that the optimum duct geometries 
at higher Reynolds number might be found in ducts with lower corrugation angles at which the 
Nusselt number is relatively high while the pressure drop is relatively low compared with ducts 
with higher corrugation angles. 
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